3,363 research outputs found

    Assumptions and guarantees for compositional noninterference

    Get PDF
    The idea of building secure systems by plugging together "secure" components is appealing, but this requires a definition of security which, in addition to taking care of top-level security goals, is strengthened appropriately in order to be compositional. This approach has been previously studied for information-flow security of shared-variable concurrent programs, but the price for compositionality is very high: a thread must be extremely pessimistic about what an environment might do with shared resources. This pessimism leads to many intuitively secure threads being labelled as insecure. Since in practice it is only meaningful to compose threads which follow an agreed protocol for data access, we take advantage of this to develop a more liberal compositional security condition. The idea is to give the security definition access to the intended pattern of data usage, as expressed by assumption-guarantee style conditions associated with each thread. We illustrate the improved precision by developing the first flow-sensitive security type system that provably enforces a noninterference-like property for concurrent programs. \ua9 2011 IEEE

    Phase-resolved high-resolution spectrophotometry of the eclipsing polar HU Aquarii

    Get PDF
    We present phase-resolved spectroscopy of the bright, eclipsing polar HU Aqr obtained with high time (~30sec) and spectral (1.6 A) resolution when the system was in a high accretion state. The trailed spectrograms reveal clearly the presence of three different line components with different width and radial velocity variation. By means of Doppler tomography their origin could be located unequivocally (a) on the secondary star, (b) the ballistic part of the accretion stream (horizontal stream), and (c) the magnetically funnelled part of the stream (vertical stream). For the first time we were able to derive a (near-)complete map of the stream in a polar. We propose to use Doppler tomography of AM Herculis stars as a new tool for the mass determination of these binaries. This method, however, still needs to be calibrated by an independent method. The asymmetric light curve of the narrow emission line originating on the mass-donating companion star reveals evidence for significant shielding of 60% of the leading hemisphere by the gas between the two stars

    Prediction of water temperature metrics using spatial modelling in the Eastern and Western Cape, South Africa

    Get PDF
    Key aspects of a river's temperature regime are described by magnitudes, timing and durations of thermal events, and frequencies of extreme exceedance events. To understand alterations to thermal regimes, it is necessary to describe thermal time series based on these statistics. Classification of sites based on their thermal metrics, and understanding of spatial patterns of these thermal statistics, provides a powerful approach for comparing study sites against reference sites. Water temperature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readily-mapped environmental surrogates, and to produce spatial images of temperature metrics: 37 temperature metrics were derived for 12 months of sub-daily water temperatures at 90 sites in the Eastern Cape and Western Cape provinces, South Africa. These metrics were correlated with 16 environmental variables. Correlations enabled development of multiple regression models which facilitated mapping of temperature metrics over the study area. This approach has the potential to be applied at a national scale as more thermal time series are collected nationally. It is argued that the appropriateness of management decisions in rivers can be improved by including guidelines for thermal metrics at a regional scale. Such maps could facilitate incorporation of a temperature component into management guidelines for water resources

    Refactoring preserves security

    Get PDF
    Refactoring allows changing a program without changing its behaviour from an observer’s point of view. To what extent does this invariant of behaviour also preserve security? We show that a program remains secure under refactoring. As a foundation, we use the Decentralized Label Model (DLM) for specifying secure information flows of programs and transition system models for their observable behaviour. On this basis, we provide a bisimulation based formal definition of refactoring and show its correspondence to the formal notion of information flow security (noninterference). This permits us to show security of refactoring patterns that have already been practically explored

    Chloroplast microsatellites: measures of genetic diversity and the effect of homoplasy

    Full text link
    Chloroplast microsatellites have been widely used in population genetic studies of conifers in recent years. However, their haplotype configurations suggest that they could have high levels of homoplasy, thus limiting the power of these molecular markers. A coalescent-based computer simulation was used to explore the influence of homoplasy on measures of genetic diversity based on chloroplast microsatellites. The conditions of the simulation were defined to fit isolated populations originating from the colonization of one single haplotype into an area left available after a glacial retreat. Simulated data were compared with empirical data available from the literature for a species of Pinus that has expanded north after the Last Glacial Maximum. In the evaluation of genetic diversity, homoplasy was found to have little influence on Nei's unbiased haplotype diversity (H(E)) while Goldstein's genetic distance estimates (D2sh) were much more affected. The effect of the number of chloroplast microsatellite loci for evaluation of genetic diversity is also discussed

    Crossover from 2-dimensional to 1-dimensional collective pinning in NbSe3

    Full text link
    We have fabricated NbSe3_3 structures with widths comparable to the Fukuyama-Lee-Rice phase-coherence length. For samples already in the 2-dimensional pinning limit, we observe a crossover from 2-dimensional to 1-dimensional collective pinning when the crystal width is less than 1.6 μ\mum, corresponding to the phase-coherence length in this direction. Our results show that surface pinning is negligible in our samples, and provide a means to probe the dynamics of single domains giving access to a new regime in charge-density wave physics.Comment: 4 pages, 2 figures, and 1 table. Accepted for publication in Physical Review

    Asymptotic information leakage under one-try attacks

    Get PDF
    We study the asymptotic behaviour of (a) information leakage and (b) adversary’s error probability in information hiding systems modelled as noisy channels. Specifically, we assume the attacker can make a single guess after observing n independent executions of the system, throughout which the secret information is kept fixed. We show that the asymptotic behaviour of quantities (a) and (b) can be determined in a simple way from the channel matrix. Moreover, simple and tight bounds on them as functions of n show that the convergence is exponential. We also discuss feasible methods to evaluate the rate of convergence. Our results cover both the Bayesian case, where a prior probability distribution on the secrets is assumed known to the attacker, and the maximum-likelihood case, where the attacker does not know such distribution. In the Bayesian case, we identify the distributions that maximize the leakage. We consider both the min-entropy setting studied by Smith and the additive form recently proposed by Braun et al., and show the two forms do agree asymptotically. Next, we extend these results to a more sophisticated eavesdropping scenario, where the attacker can perform a (noisy) observation at each state of the computation and the systems are modelled as hidden Markov models
    corecore